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We study the current-voltage characteristics of one-dimensional
semiconductor devices by numerical approximation based on finite
elements of the steady-state semiconductor device equations. A
hlock nonlinear Gauss--Seidel procedure is employed to decouple
the full system. Then, at each iteration, a Neumann-Neumann do-
main decomposition method is applied to solve the linearized equa-
tions. Numerical examples will be given, with special emphasis on
charge generation effects due to impact ionization. © 1985 Aca-
demic Press, Inc.

. INTRODUCTION

The aim of this paper is to study the current—voltage (1-V)
characteristics of a one-dimensional p-n diode, which is a typi-
cal test device in semiconductor modeling. In Section 2 we
will introduce the well-known drift-diffision cquations (see
[13, 17]) that describe charge flow in a semiconductor device
at steady-state conditions. The mathematical problem consists
of a set of three highly nonlinearly coupled equations in the
unknowns (i, n, p), which are respectively electric potential
and carrier concentrations (electrons and holes).

In order to reduce the computational efiort, a block nonlinear
Gauss—Seidel algorithm known in semiconductor literature as
Gummel's map [12] is considered to decouple the full system in
Section 3. The three resulting lincarized equations are suitably
formulated and then successively solved in Section 4 by a
Neonmann—Neomann domain decomposition method [ 1], This
strategy s molivaded by the strongly varying, nature of the
solutions, which usually exhibit very sharp interior layers across
a thin region at the p-n junction while behaving smoothly in
the remaining part of the device domain.

Concerning the spatial discretization we will respectively
employ piecewise linear finite elements for the electric potential
equation and exponentially fitted finite elements (& la Scharfet-
ter and Gummel | 16]) to handle the convection—diffusion equa-
tions for both electron and hole densities (see also |2, 3, 14]).
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It is well known that the latler elements provide a stable discreli-
zation scheme which can be proved to be equivalent to an
optimal upwinding method, thus being ideally suited for repro-
ducing the sharp layers described above,

In the conchuding seeiion 6 we will discuss several numerical
results relative to the study of the diode (I-V) curve at some
working points of remarkable interest. In particular, we will
concentrate on the solution of the problem at the onset of
avalanche breakdown (see, e.g., [19]). Under these conditions
a blowup of carrier concentrations gives rise to an unbounded
current (low throughout the device, which in turn dramatically
slows down the convergence of Gummel’s map. This behaviour
is confirmed by a spectral analysis of the map iteration matrix. A
suitable strategy to accelerate the original algorithm is therefore
proposed, based on a preconditioned BI-CGSTAB iterative
mcthod [20). Our experimental analysis outlines that this
method improves substantially the convergence propetties of
the classical Gummel’s map.

2. THE DRIFT-IMFFUSION MODEL FOR
SEMICONDUCTORS

Charge flow throughout a semiconductor device at steady
state is commonly modeled (see, e.g., [13, 17]) by a set of
elliptic partial differential equations that, after a suitable scaling
171, read

- A= n
div], = R(, n, p) (2)
divl], = —R(ys, n, p), (3)
where
p=plpn(@).plg) =(p—n+0C) 4)
J. = 4, (Vn — nVyf 5
b=~ (Vp + pVi. (6)

Note that p depends on ¢ through p and n, as will be pointed
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N

FIG. 1. Simulation geometry of a planar p-n dicde.

out later on. The equations above are known as the drift-diffu-
sion model for semiconductors and can be solved in any open
bounded set {2 of R" (m = 1, 2 in this paper) having a Lipschitz
boundary I'. The unknowns (i, n, p) are respectively electric
potential and free carrier densities (electrons and holes) so
that (1) is a classical Poisson equation which relates electric
potential to the space charge density p, while (2) and (3) are
two continuity equations for electron and hole current densities
J, and J,. The constitutive laws (5) and (6) describe current
flow throughout the semiconductor as a superposition of a drift
_(or convective) term proportional to the electric field E =
~Viy and a diffusion component proportional to the gradient
of the concentrations. The doping profile C(x} at the righi-hand
side of (1) is a known function while the net recombination/
generation rate R and the carrier mobilities u, , depend nonlin-
early on the unknowns (¢, n, p), according to the relations (see,
e.g., [17, Chap. 4])

R = Rggp + Ray + Ry, 0
where
R — pn—1 )
M np+ D+ T+ 1)
Ryy =1{pn — D(Cn + Cpp) )]
RII - _(anlJnl -+ alep') (10)
and
2 V Brw ”an
Hnp = (ﬂﬁ.p/(l + (’f—_gl (pl) )) . (11)
np

Subscripts in (8)-(10) stand for the corresponding recombina-

tion/generation mechanisms, namely, SHR and AU respectively
mean Shockley-Hall-Read and Auger recombination/genera-
tion, while IT denotes impact ionization generation. The function
R provides a measure of how much the semiconductor device
deviates from thermodynamical equilibrium (in which case R
= 0). In particular, R > 0 (R <) denotes net charge recombina-
tion (generation) per unit time and unit volume, Concerning
the physical models employed in our numerical computations,
we will assume the carier lifetimes 7,, as in [6], the Auger
coefficients C,;, as in [8], the parameters v}, and f3,, as in [4],
and the ionization coefficients a,, according to Chynoweth’s
law [5],

o, = a:rjp exp(_ESxfg/En‘p)a (12)
where the constants ay,, Efy are taken as in [21] and E,, are
the electric field components in the direction of electron and
hole current densities.

Boundary conditions of mixed type will be assumed to hold
for system (1)—(6); to this aim we will divide the boundary I"
into disjoint Dirichlet and Neumann segments =y, and 2y, such
that Iy = U, 2, Iy = U, Zh, and ' =Ty U Ty (see
Fig. 1). Uniqueness of the solution demands that I'p is not
empty.

Dirichlet boundary data (¥, np, pp) are then assigned at
each Dirichlet segment 2, (f = 1, ..., rp) as

wh=Vi+ i, with ¢i; = sinh™"(C,f2) (13)
nh = (C;+ VCI + D2 (14)
Ph=(—C + VC+ 2, (15)

where C; is the (constant) value of doping C(x) at the Dirichlet
segment 2, ¢ is the so-called “built-in’’ potential, and Vi,
is the external applied potential. Relations (13) and (14)—(15)
represent respectively flar band approximation for potentials
and space charge neutrality and they define the mathematical
model for the ideal ohmic contact EB (see also [17, pp. 28-
30). Concerning the Neumann boundary conditions, we will
assume that the semiconductor device is ““self-contained’’;
namely, all currents flow only throughout the ideal ochmic con-
tacts 2. This means that the normal components of both the
electric field and the current densities vanish along each Neu-
mann segment Shk=1, .., o,
Vg-u=JL-un=1-y=0, (16}
where v, is the unit outward oriented normal on Sk,
Maxwell-Boltzmann statistics is assumed to hold for car-
rier concentrations
n=e¥ %

(17)
(18)

p=e% v,
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where ¢,, are electron and hole quasi-Fermi potentials. By
plugging (17)—(18) into (4), space charge density reads

Pl n(), pi)) = pe™ — p,e? + C(x). (19)
Two different choices of the dependent variables, alternative
to the set (i, n, p), are suggested by the relations above. These
are respectively the sets (i, @., @,) and (4, p., p,), where p,,
are usually known as Slotboom variables [18] and are related
to (n, p) by

(20)
(21)

Pa= e~ = pe

e = pe’.

Pp

We will discuss in the next two sections how the new vari-
ables can be coupled with (i, n, p) for an efficient abstract and
numerical solution of system (1)—(3).

3. GUMMEL’S MAP FOR THE ITERATIVE SOLUTION OF
SEMICONDUCTOR DEVICE EQUATIONS

In this section we will recall a block nonlinear procedure for
the iterative solution of Eqs. (1)—(3} which is long established
in semiconductor device modeling and has proved to work quite
effectively in most of the numerical experiments performed so
far. The algorithm, commonly known as Gurmmel’s map [12],
forces a deccoupling among the equations, thus leading to the
successive solution of one nonlinear Poisson problem and two
linearized convection-diffusion equations.

Gummel’s map reads as:

given (Y, nb,phy=w', k=1,2,..,
solve
_Al!,kﬂ = p(X, ¢k+l) =
1 it (22)
(phe™" — ple? + C(x)) = H(P*)
{by a suitable linearization method, e.g., the Newton method.

This introduces an inner loop)

Then set w1 = (**1, 0¥, p¥)

and solve
—div J, (=¥, ¥ = =R, nt, ph) (23)
div J(p**, ¢ = —R(y+Y, vk, pb) (24)

Now update wk+1 = (lfl"“, iik”, pkH}
and repeat until convergence
We will refer in the following to this iterative procedure on &

as the outer loop of the global algorithm; Gummel’s map is
precisely the one that furnishes w**! in terms of* w¥,

As can be seen, the intermediate nonlinear step (22) provides
a new electric potential Y**! which is plugged into the two
convection—diffusion equations (23) and (24) to be solved for
the carrier concentration n**! and p**!, respectively; note that
the gradient of **! is employed to evaluate the carrier mobili-
ties (11), the current densities (5) and (6), and the ionization
rates (12) which are eventually used to make up the impact
ionization generation term (10). The procedure is stopped as
soon as |w**' — w*|| (for a suitable norm) falls below a fixed tol-
erance.

Among the few results existing in literature on the conver-
gence properties of this map we will make reference in the
following to a couple of papers by Kerkhoven [9, [0], where
both abstract and spectral analyses of the decoupling algorithm
are performed in the case of vanishing recombination/genera-
tion mechanisms, i.e., R = 0.

A first goal of our work is to generalize the Gummel’s map
so that it is able to converge in those situations where alf the
recombination/generation terms (8)-(10) are being properly
considered. In this case the decoupling algorithm is shown to
be inadequate as the applied ‘‘biasing potentials’* come close
to the breakdown voltage Vg, where an unbounded increase
of the current densities and of the carrier concentrations takes
place in the physical device as the result of a corresponding
growth of the impact ionization generation term Ry.

The mathematical counterpart of this physical picture is the
strong positive feedback due to the coupling between the source
term and the left-hand side of the current continuity equations
(2)-(3). It is indeed possible to show that the exact solutions
of these latter may become as large as infinity for some particu-
lar values of the ionization coefficients «,, o, which in turn
depend on the local electric field strength |Vii(x)| according
to (12).

There are two main approaches for tackling the problem of
the quick worsening of convergence rate of Gummel’s map at
breakdown conditions.

First, one has to build suitable variants of the standard decou-
pling algorithm characterized by stronger convergence proper-
ties; a typical procedure is to solve two nonlinear convection—
diffusion problems at each global iteration, usually by means
of the Newton’s method (cf. [17, Chap. 7}). A second possibility
consists in using vectorial acceleration methods that produce a
superlinear asymptotic rate of convergence without excessively
increasing the CPU tme and the memory resources [11].

Alternatively, one can switch to a numerical method that
solves the whole coupled system (1)--(3) by nonlinear iterations
(e.g., the Newton—Raphson method); the latter approach, how-
ever, has several drawbacks, primarily, its very large computa-
tional costs. Furthermore, the Jacobian matrix is in general
neither symmetric nor positive definite, in contrast with what
happens for the simple Gummel’s algorithm where the coeffi-
cient matrices for Poisson and convection—diffusion problems
are respectively a symmetric positive definite matrix and two
M-matrices.
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We will discuss the analysis of our variant of Gummel’s
map based on the use of BI-CGSTAB method [20] in the
concluding section of this paper.

4. THE DOMAIN DECOMPOSITION METHOD FOR THE
ITERATIVE SOLUTION OF SEMICONDUCTOR
DEVICE EQUATIONS

In this section we will develop some motivations based on
physical grounds for employing the domain decompaosition
method (DDM) as an efficient strategy to solve {22)—(24) at
each iteration. To this aim, we will briefly describe the qualita-
tive behaviour of the solutions of a typical test problem in
semiconductor device modeling, namely, a one-dimensional
p-n diode with an abrupt doping profile C(x).

Let the device domain be the interval 0 = [0, L] and let the
doping C(x) in (1) be the piecewise constant function

~N], 0=x=

b3 | =

Clx) = (25)

Supposing |N.|, N, > 1, the Dirichlet boundary conditions read
in this case

$(0) = —~log|N,,

1
{an,

&u(L) = log N,

n(0) = n(L) = Nq,

(26)
p©) = |V}, PfL):ALg,’

'1"](0) = Vap + ¢b(0)v ¢(L) = Van + ¢b(L)'
Depending on the sign of the voltage difference V, = V,, —
V. applied across the device, we will mean respectively forward
bias if V, > O and reverse bias if V, < (; the case V, =
0 defines the condition of thermodynamical equilibrivm. A
qualitative behaviour of the solutions of (1)—(3) may be deduced
by setting R = 0 and working out the regional approximations
typical of semiconductor device physics (see, e.g., [19]), leading
to the graphs shown in Fig. 2.

As can be seen, all of the unknowns exhibit sharp interior
layers in the neighbourhood of the p-n junction (x = L/2); the
potential layer is due to the jump of the doping profile, whilst
the layer in the carrier distributions is due to the convection-
dominated nature of the drift-diffusion equations in the narrow
depleted region across x = Lf2.

The extension of this simple physical picture to the study of
more realistic device geometries is straightforward, since we
exactly know a priori the position of each single interior layer,
which typically occurs at the p-n junctions, ie., where the
doping profile C(x) attains its steepest gradients. This makes

the choice of a suitable partition of the device domain an easy
matter, so that DDM may be profitably employed for an efficient
solution of the semiconductor device equations.

4.1. A Neumann-Neumann Domain
Decomposition Algorithm

The Neumann—Neumann (NN for short) domain decomposi-
tion method allows the solution of self-adjoint boundary-value
problems in regions partitioned into subdomains through an
iterative procedure among subdomains. At each step the updat-
ing is achieved by solving independent subproblems with
Dirichlet conditions; this phase is followed by a correction
yielding subproblems with Neumann conditions at the inter-
faces among the subdomains.

The method is described in [1], where an acceleration proce-
dure relying on conjugate gradient (CG) iterations for the so-
catled Steklov—Poincare’s interface operator is also proposed.

In order to describe the NN algorithim in detail, it is useful
0 introduce some notations; in this section {1 will be an open
bounded set of R? with a Lipschitz boundary I, partitioned in
subdomains {); with boundaries 1'; as illustrated in Fig. 3.

Let us introduce the boundaries

FZFDUFN
F}:}:F;OFD

vy =vi=LiNT,

5= U Y
i

5= U Yii»
J

where § is the *‘skeleton’’ made by all the subdomain interfaces
and the spaces
HY(Q) = {v € LX), Vv € L)}
V={wE (), v =00onTy}
Y ={v|s,v €V}
V.={ve H{OQ),v=00nT"
Vi, = EH Q) v=0onTPUS}

We then consider the following abstract variational problem

find u & V such that
a(u, )= (f,v) YveEY,

(@)

where a(u, v) : V X V — R is a symmetric, continuous, and
coercive bilinear form and (f, v) is the usual inner product in
L) for any given function f € LX({}).
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FIG. 2. Potential and carrier distributions under reverse bias.
It is also possible to define a suitable inner product on the - We report in the following the main steps of the NN algorithm

spaces V; introduced before, which will be denoted in the [1] that solves problem (#').
following by adwx, v} for any «, v € V.. Moreover, we let

Tr7'(A) any element z € V, whose trace on S, equals A. Denoting  {nitialization

by a;(u, v) the restriction of a{u, v) to each subdomain (},,

blem () takes the f For A given in ¥ solve the Dirichlet problems in any {};
problem takes the form

oV,
du € V such that P’
ﬁn U SUC (1 @ a(u, v) = (f, v) Vve ‘/0,
N
> au.v)=(fv) YWEV, =4 ons;

Compute £;(v) = Zila(u;, Tt (@w)) ~ (f, Tr; {aw)).

where N is the total number of subdomains €};. Solve the Neumann problems

oV,
T, 3
afgw. vy =Flv) Yo eV,
¥ Compute
1
'Q1 -Q4 dy = Z ai(@i.o, @) = Z 525(991,0)
Wio = @i, Rip(v) = Zi{v)
r ’le YM 1“
D Loop on n: For n = 0 Until Convergence Do
Compute A = Z;a;w;,
Q, s Q, Solve the Dirichlet problems
zeV
\— a,‘(z,‘, U) = 0 VU [ V(J‘!-
r N i = A on S,‘

FIG. 3. Definition of the subdomains and boundaries. Compute .SE,—(U) = Ej(aj(zj, Tr,-"(a,-v)) Yv eV
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Solve the Neumann problems

heEV;
ap, vy =2Lv) YWEV,
Descent Step

Set
ry= 2 AW ) = D Eiw,0)
J J
&, =d.Jir,
iy = Uip — 6nzi
Pt = @in — Gt
Rii®) = R (v) — 8,&:(v)

Computation of the New Descent Direction

Compute

doy = E aj(‘Pj.nH , ‘P;.nﬂ) = 2 Rj.nﬂtl({:aj‘nJrl)
j

i
or, alternatively,

dopy = d,— 6, 2 c(-fj(ﬁoj.n + ‘Pj.n‘*’])
J

It
Vi, fd, <107
then stop
else let
d,
Wint1 = @pe1 T 7:[ Win.

As for the Neumann problems, it must be noted that the best
choice would be to set &{u, v) = a(u, v), since in this way
the Neumann step is the exact inverse of the Dirichlet step with
respect to the Steklov-Poincare’s operator. By so doing, the
condition number of the algebraic problem at the interfaces
turns out 1o be very small.

The algoritiun above may be easily implemented in a way
suitable for a finite element method (FEM), where the spaces
V; are approximated by finite dimensional spaces and the trace
operators are defined at each interface node by the relationships

ai( ¢Jc 7 ¢k)

a, (W) (P) = Ej a(dns bo) (P,

where ¢ is the weighting function at the node Py, i.e., the finite
element test function. Going back to the original problem at
the continuous level, we may say that, starting from an initial
guess «", the NN method generates a sequence of approximants
{u"} of the exact solution; such functions are continuous over
the device domain £} but, in general, will have discontinuous
derivatives just at the interfaces. The Neumann step does the
job of smoothing these irregularities (smoothing phase) by dis-
tributing the jumps at each interface of the electric field and
of the discrete current densities all over the subdomains.

4.2. A Discussion on the Convenient Choice of the
Dependent Variables

There are two kinds of problems that need to be faced at
each step of the outer loop. The former concerns a Poisson
equation arising from a suitable linearization of (22) and the
latter from the current continuity equations (23) and (24} which
are nothing but advection—diffusion equations. A naive applica-
tion of the NN algorithm described above for the solution of
(22), (23), and (24) presents several drawbacks. Each of them
will be discussed and motivated by means of some examples
and a concluding possible approach, which has proved to work
quite effectively in our numerical experiments, will then be pro-
posed.

As for Eq. (22), the simplest approach consists in using
Picard iterations. Denoting by m the inner iteration counter,
the generic stage of the algorithm may be written as

i = R,

m=0.1,...

27)

Taking m = 0 in (27) and 47 = ¢, a single Picard iteration
is obtained to update **!, This amounts to solve the following
linear problem

_‘pn.{-ﬂ(x) = (pk —nt+ C(I)) = Pk(x)a
PO = th, PN =

O0<x<L,
(28)

The solution of (28) by a NN procedure does not present any
difficulty; indeed, the numerical experiments show that the raie
of convergence is independent of the initial guess (even if it
is very far from the exact selution), of the source term p* and
of the mesh size A, being only a function of the number of
interfaces. This agrees with the theoretical convergence proper-
ties of the CG method if we point out that we are actually
solving a linear system coming from the discretization of the
Steklov—Poincare’s operator and whose order equates the num-
ber of subdomain interfaces, since a unique mesh node is de-
fined ar each intertface.

A serious drawback of the linearization above is the strong
dependence of the solution on the right-hand side, i.e., of y**!
on p% In particular, when the space charge region, ie., the
interval where p*(x) remarkably differs from zero, attains varia-
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FIG. 4. Solution of the linear Poisson problem as a function of p*
(through x,).

tions of the order of & during the numerical solution phase, the
corresponding variations of electric potential **! in the neutral
region, i.€., the zone where p*(x) is =0, are no longer acceptable.
In fact, the potential ¢#*' assumes unrealistic slopes which may
strongly compromise the global stability of the iterative map
when the output from the Poisson equation (28) is plugged into
the next two drift-diffusion equations.

An explicit example of this undesirable phenomenon may
be given by solving the boundary-value problem (28) over the
symmetric domain ) = [—L/2, L/2] with

01 7£Sx£‘—xnzﬂls
2
) —N, —x,<x=0=1,,
pHx) = 4
+N, 0<x=yx,=(),,
L
O, xn<xSEEﬂ4,

where N > 0 and ¢/**'(L/2) = —¢**(—L/2) = . The right-
hand side is consistent with the so-called depletion approxima-
tion (see, e.g., [19]), which is the usual one in semiconductor
device physics.

The corresponding (x) is respectively linear in {}, and {),
and parabolic in {}, U €1,. By imposing continuity of ¢**!(x)
and "*"(x) at x = *x, and the boundary data, the slope A of
the solution in the regions |x| > x, is readily obtained as

_ 2¢— Nxl

A
L

Electric potential in the case N = 1000, L = 1, ¢y = 10, x, =
{0, Lr20, L/10, L/4} is reported in Fig. 4, clearly showing its

nonlinear sensitivity to the increasing values of the parameter
x,. It is worth noting that this effect is strictly connected to the
peculiar nature of the space charge density p*, namely, its
implicit nonlinear dependence on potential ¢**', and it must
not be ascribed to the NN method. Indeed, plugging any of the
potentials shown in Fig. 4 into the drift-diffusion equations
produces completely unphysical carrier distributions that may
become excessively overfunder estimated according to the cor-
responding value of x,.

A correct and stable formulation of the global iterative map
may be obtained by taking into account the explicit dependence
of p on ¢ in the Poisson problem, as it will be pointed out
later on.

As for current continuity equations, our first effort has been
to provide a self-adjoint equivalent formulation, as demanded
by the NN method.

We point out that, for each k, Eq. (23) yields (in ils one-
dimensional versicon)

—Ji= —~(ln’ —n¥)) = <R, 0<i<lL,
(29)
H(O) = Hp,

n(l) =ng,
where the dependence on the iteration counter (k + 1) for both
n and ¢ is understood. Since the two drift-diffusion equations
are of the same nature, we will restrict our analysis only to the
electron current continuity law.

We operate the change of variables (17)-(18) on (29) which
introduces the new set of unknowns (¢, ¢,, ¢,). Owing to (17),
electron current density may be written as

Jn = -ﬂnew_‘p"(Pr'l y
so that we can replace (29) by

Jo= (e %) =R, 0<x<IL,

ed0) =V,, @ll) = Va,

(30)

where the boundary data are the values of the voltages applied
to each ohmic contact.

Despite the fact that the functions i, &,, and R are known,
problem (30) turns out to be nonlinear in ¢,, thus making the
Neumann—Neumann algorithm described in Section 4.1 not
directly applicable to it. In order to overcome this drawback
one may ‘‘freeze’’ the coefficient e¥~% by setting it equal to
the value of electron concentration computed at the previous
global iteration step, thus leading to solution of the elliptic
boundary value problem

(@) =R, 0<x<L,

@0) = Vi, @ull)= Ve

3



SIMULATION OF SEMICONDUCTOR DEVICES 53

Approximation of (31) by standard Galerkin piecewise linear
finite elements yields a symmetric positive definite linear sys-
tem, for which the NN subdomain iterative procedure is ideally
well suited. Unfortunately, on this problem the NN method is
shown to be unsuccessful. Precisely, the corresponding solution
turns out not to be acceptable in the neutral p-side of the diode,
where the electron quasi-Fermi level presents a cusp right at
the interface position placed in that zone, whilst it is correct
in the neighbourhood of the interface in the n-side of the device.
This behaviour is due to the extremely large variability of the
coefficient a(x) = w,n*, whose values run through the range
1071 + 10'° and atrain their minimum just in the neutral p-
side of the pr junction. This reflects negatively on the residual
evaluations required by the CG method, which are indeed pro-
portional to the product a(x)ey, i.e., to the discrete current
density. These residuals may be very small in practice, even
with a great jump of ¢y, because of the smallness of the
coefficient a(x).

Moreover, we remark that, even if the obtained solution is
reasonably close to the expected one, its successive plugging
into the Poisson equation (22) produces a completely unphysical
space charge density p, which, as we have already pointed out,
is dangerous for the stability of the global map. This is due to
the exponential dependence of pon ¢, (17); it is indeed possible
to express this dependence by the following sensitivity relation
which holds true for all x € (0, L),

where 8 means ‘‘variation,”” Vj, is the therma! voltage (at room
temperature it equals 25 mV), and ¢, may assume in practical
computations values of the order of tens or hundreds of volts,
A second way to get a self-adjoint form is based on the use of
the Slotboom variable p,. Owing to (20), the current density
J, in this case becomes

Jn = /"’ne\bp::

and the related differential problem may be formulated as

—Ji = —(ue®p)y = —R, O0<x<L,

(32)
pu0) = n(0)e™%,  p.(L) = n(L)e™",
which can be recognized as a linear elliptic boundary value
problem, since i is given at the (k + 1)th stage. Due to the
presence of the exponential factor e, the actual solution of (32)
turns out to be feasible only for small values of the Dirichlet
data ¢ and ¢, i.e., close to the thermodynamical equilibrium
(equivalently, V,, = V,, = 0 V). In all other biasing conditions,
underflow/overflow problems due to the enormous range of
variation of the coefficient ¥ make the p,-variable formulation

(32) unsuitable for practical computations. This negative feature
is very well stressed in semiconducter device literature (see,
e.g., [17, 13], and for the computational aspects [2]).

The third {(and successful!) way exploits the Scharfetter—
Gummel [16] approximation of the current density J/, which is
assumed to be piecewise constant over the device domain, It
is indeed possible to set up.two perfectly equivalent numerical
schemes based respectively on the » and p, variables. This
means that we can formally implement the NN method on a
discretized version of problem (32) as will be pointed out
in the next section. However, when computing the residuals
(involving the jumps of J, at subdomain interfaces), we will
make use of the equivalent nonexponential expression J, =
/‘(‘n(n’ B n"nt’r)-

We wish to focus now on those steps in the Neumann-
Neumann algorithm described in detail in Section 4.1, where
the change of variable p, — »n comes out explicitly. Each single
Dirichlet and Neumann problem may be directly solved in
terms of electron concentration, since the change of variable
simply acts as a scaling of the stiffness matrix.

The evaluations of the &£;(v) terms is analogously transparent
while possible numerical difficulties may arise in the computa-
tion of the d, and r, residuals, since these latter are weighted
by the nodal values of the ¢-functions that are the solutions of
the single Neumann problem and act in this context as Slotboom
variables. (We are referring to the notations introduced in Sec-
tion 4.1).

A simple example will be considered now in order to better
explain what happens in the numerical computations. Let us
suppose that the domain = [0, L] is partitioned into three
subdomains (};, where the interfaces have been respectively
denoted by vy, and ;. The computation of the dy term gives

dy = 2, Ldgie) = LiwIei(y) + EHV)esyn)

+ L)eslyn) + Ev)yn)
which, by invoking the transformation ¢ = ‘e~ may be ex-
pressed in terms of the variable 9 (the solution of the Nesmann
problem in the drift-diffusion form) as

dy = ggl(v)e—'fw.z);p](ym) + c-f"fi(v)ff”“*”’ffvz(%z)

+ Fv)e Mgy (yn) + Eavle R oy (yn).

A similar expression may be obtained for the generic term
d, and for the residual »,, where in this case the ¢-functions
must be substituted by the w-functions (and, similarly, @ by
#); it is clear that the exponential terms in the relation above
are a potential source of trouble. In any case, since the ratio
between residuals r, and 4, must be computed, in the two
particular cases in which either ¢«(x}) = const over the device
domain Q (pure diffusion problem), or there is one single
interface -y, these exponentials are common to both numerator
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and denominator in the formula above so that they cancel each
other out and their computation may thus be avoided.

Actually, the Neumann—Neumann iterative algorithm tested
in the case of more than two subdomains has always exhibited
problems similar to those already described for the choice of
set {, @,, ¢,). In fact, the values of the concentrations tend
to stagnate in the minority regions, where the solutions present
a cusp as in the case of the quasi-Fermi variables discussed
before,

4.3. The Solution Algorithm

On the grounds of the conclusions drawn in Section 4.1
and on the basis of the numerical experiments performed, we
propose the following solution algorithm.

QOuter iteration on k

* Costruct Newton iterates {} for the nonlinear elliptic
boundary value problem

_!'b_flk — (pié—le*u‘ﬁ- _ pf{-—]ew + C(x))

= p(x, PHx)), 0<x<L, (33)
RO =do, YNL) =,
such that

lim s, = ¢r*

* for each m (inner loop) solve the linearized problem by
the NN multidomain method,

* Solve the linear drift-diffusion problem

~ (sl — 0y = =R ', ptY),
nk(O) = Ay, f'lk(L) =ng.

O<x<L,
(34

Convergence of the approximants {%} may be proved by
associating a minimum variational problem to Eq. {33) (see,
e.£., [15]). The functional minimized by the solution of the
quasilinear Poisson problem is

Fn = f: G (§'P + pet+ pef— Czp) dx + %,

where ¥ is a constant and the dependence on the iteration
counter k is understood.

Concerning the linear convection-diffusion problem (34)
{and its twin for the p variable), it is necessary to modify the
standard Nenmann—Neumann method in such a way as to solve
a series of differential problems having just one interface each
and, consequently, only cne degree of freedom. This kind of
subproblem may be in fact easily solved in a single iteration
by the original domain decomposition procedure. Actually, the

Q Te Q, Yo Q, Tu Q,
i ! . —
le {23 QZM —
Q
— —

FIG. 5. Recursive partitioning algorithm to reduce ta single interface prob-
lems for #* by the NN multidomain method and proceed similarly for p*,

starting coupled problem partitioned in N subdomains is recur-
sively led to N/2 subdomains problems by an algorithm that
systematically eliminates the interfaces until single-interface
problems are reached and eventually solved. This strategy is
illustrated in Fig. 5 in the case of N = 4,

When extended to either two- or three-dimensional configu-
rations, the above procedure needs to be modified accordingly.
The remarkable feature of being driven by a single parameter
at the interface in one-dimensional devices is unfortunately lost
when considering higher dimensional semiconductors. In the
latter case, the number of free parameters does coincide with
the overall number of finite element nodes lying at subdomain
interfaces. Nonetheless, the outer iterative procedure yielded
by the Neumann-Neumann domain decomposition algorithm
can be generalized straightforwardly and the conjugate gradient
approach can still take care of selecting optimal acceleration
parameters. In the specialized literature it is extensively demon-
strated that this domain decomposition method can provide a -
convergence rate which does not depend on the finite element
mesh size (and, therefore, on the number of nodes on interfaces).
However, its efficiency can deteriorate at a linear rate, as the
number of subdomains gets larger. The latter circumstance does
not necessarily occur for the problem at hand, which suggests
a coarse subdomain partition that fits the ‘‘regional’ behaviour
of the solutions, as already stressed in the introductory part of
Section 4, On the other hand, if one wishes to resort to fine
partitions in order to exploit machine paraltelism, as every
other domain decomposition method, the Neumann-Neumann
procedure could be modified through the intreduction of auxil-
iary coarse-level partitions that make the overall method almost
insensitive to the number of subdomains.

5. FINITE ELEMENT DISCRETIZATION OF THE
DRIFT-DIFFUSION SYSTEM

In this section we deal with the spatial discretization of the
three differential subproblems that are to be solved in sequence
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at the kth step of Gummel’s decoupled algorithm. Again we
confine our analysis to the one-dimensional case. The explicit
dependence of the variables on the iteration counter will be
omitted for the sake of clarity in the following.

We first introduce some useful notations: let F, = {F}}%*
be a nonuniform partition of the device domain (@ = {0, L),
where the element T, = (x,_,, x;) has size f; = x; — x,_,, and
we denote by & = max h, o; = T, U T}, the support of
the jth shape function and by P; the space of polynomials of
degree =k.

Let us now consider the finite element approximation of the
quasilinear Poisson equation (33); this latter is first written as

=) — plx, Y)Y =F(Y) =0 (35)
and then solved iteratively by Newton’s method (inner loop),
according to the procedure

_3|.P;+1, + (pm + nm) 8¢m+'. = "@(dlm)
l:”m+1 = (I!rm + 5'!Im+ls

(36)

where Sy(0) = Sy(L) = 0 and m is the inner iteration counter,
The weak formulation of (36) reads
find 8yr,) € HY}) such that Vv € H)(()
Iﬂ 34’;%] U' dX + J!I(Pm + nm) 6'1”»:-(—1 U dx
(37)

_ -(LI iy dx — fﬂ plx, v dX)-

Its approximation by a pure Galerkin piecewise linear finite
element scheme leads to the linear system

(A+ D)y dw,., = —Aw, t+ b, (38)
where we have respectively denoted by dw,,, the solution
vector, by w,, the nodal potentials at the previous step of New-
ton’s method, by A the usual Laplacian stiffness matrix, by D
the positive diagonal matrix obtained by evaluating the second
integral in the left-hand side of (37) by a trapezoidal quadrature,
and by b, the vector obtained by approximating the second
integral in the right-hand side by the same rule. Use of trapezoi-
dal quadrature introduces a strong positive diagonal perturba-
tion in the Laplacian stiffness matrix so that the resulting matrix
M = (A + D) turns out to be symmetric strongly diagonally
dominant (and thus positive definite) and then the linear system
(38) may be successfully solved by the NN method.

We address now the second item in Gummel’s decoupled
algorithm, namely, the numerical solution of the two linear
drift-diffusion equations. The heavily convection-dominated
nature of these latter demands a suitable choice of the finite
element basis functions in order to get a stable and accurate

approximation of the carrier distributtons. Such a goal is fully
achieved by assuming as trial space for electron (respectively
hole) concentration the set of the functions deduced by the
Scharfetter—Gummel {SG) approximation [16] of the current
density field J, which is assumed to be piecewise constant (i.e.,
Jh|Tj = const V). The divergence-free assumption on .J, gives
rise to a stiffness matrix which is an M-matrix with a strictly
positive inverse (cf. [2, 3, 14]). This property is quite desirable
in semiconductor device simulation, since it guarantees posi-
tiveness of the free carrier distributions obtained by solving
the discretized current continuity equations.

The resulting finite element scheme can be regarded as a
Petrov—Galerkin one and it is characterized by a O(#%) conver-
gence rate. Besides, it may be proved that it is equivalent to
an optimal upwinding finite element method [2, 14].

6. NUMERICAL RESULTS

In this concluding section we discuss some numerical exam-
ples relative to the simulation of a one-dimensional p-x diode
with an abrupt doping profile C(x) and subject to some different
values of the biasing potential V, = V,, — V,,. The choice of
such a model problem makes the algorithmic effort relatively
easier while retaining a wide range of generality, since the
basic physical properties of the solutions in more complex and
realistic geometries are well reproduced by the one-dimensional
approximation.

The goal of the numerical experiments is the study of the
p-n diode current-voltage (I-V) characteristic. This latter is the
curve describing the variation of current measured at the de-
vice’s ohmic coatacts as a function of the applied bias voltage
V, and turns out to be all one needs to know in order to
characterize the device’s performances. Denoting by W the
cross section of the real three-dimensional device, current is
defined as = (J, + J,)W.

Three zones may be distinguished on the (I-V) curve in Fig,
6, where the values V, = (V.y, Vi) respectively denote the
“‘built-in’" and the breakdown voltages. Accordingly, it turns
out that solutions of problem (22)-(24) belonging to the same
zone exhibit similar properties and behaviour as the parameter
V, changes with continuity. We thus only report the numerical
results relative to the study of some specific working points of
particular interest on the (I-V) curve.

We assume the device length L = 10 g#m (junction at x =
£42) and the doping concentrations |[N,| = N, = 10" cm 3, so
that the buittin voltage Vi == 0.84 V and the breakdown voltage
may be roughly overestimated as |Vee] = 25 V. The drift-
diffusion system has then been solved, supported by the follow-
ing voltage boundary conditions:

(i} V, = 0V (thermal equilibrium),

(ii) V, = —10 V (moderate reverse bias),
(i1} VvV, = 0.8 V (high forward bias),
(iv)y V,= —24 V (breakdown),
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FIG. 6. p-n diode current—voltage characteristic.

Convergence of Gummel’s decoupled algorithm has been
monitored in the computer code by checking respectively the
maximumi absolute and relative nodal variations of the electric
potential and carrier concentrations between two consecutive
iterations, where the corresponding error tolerances have been
both set equal to 107, We show in Fig. 7 the numerical results
relative to the cases V, = {0, —10, 0.8} V; the main parameters
for each simulation are sketched in the headings, where IDOM
is the number of subdomains, NP is the total number of internal
nodes, and ITGLOB denotes the number of iterations on %
needed to achieve convergence of Gummel’s map. Note the
highly nonuniform distribution of the mesh nodes over the
device domain; the grid spacing has been taken constant within
each subdomain, being quite coarse in the lateral quasi-neutral
regions and much finer in the depleted zone across the junc-
tion, where the maximum variations of the solutions are ex-
pected.

As a first comment, we note that all the results show the
quick convergence of the nonlinear block iterative procedure,
which turns out to be reasonably independent of the applied
voltage V,. Further checks on the discrete distributions of the
electric potential and carrier concentrations have also proved
the accuracy of the method measured in the sup-norm. More-
over, we stress that the solution by the NN domain decomposi-
tion method of each subproblem (22)—(24) has always required
a number of iterations as low as the number of interfaces.

From a more physical standpoint, it is interesting to outline
the strong difference between the two biasing conditions V, >
O (forward bias) and V, << 0 (reverse bias). In the first case

the positive applied voltage allows for a large current flow
throughout the device (/,, = 500 Acm™), since the effective
potential barrier across the junction is reduced from the total
built-in voltage Vg, to the value Vg = Vi, — V.

On the other hand, current flow tums out to be almost negligi-
ble (J,, = 107 Acm™?) under reverse bias, since in this case
Ve = Vew + |V.|. Tt must be noted that this problem is heavily
convection-dominated in the region across the junction, where
the electric field attains a peak value of —400 KVem™ to be
compared with a corresponding value of —2.5 KVcm ™' in the
case V, = 0.8 V. We remark on the effectiveness of the SG
finite elements in reproducing the sharp interior layers resulting
in the carrier distributions, as is further demonstrated in Fig.
8, showing the solutions of the same reverse-biased problem,
where R = 0 has been assumed in the current continuity equa-
tions (23)—(24).

Note, in particular, the steep gradients of the free carrier
populations which diminish from 107 down to 10° cm™* over
a region ==0.1 «m wide; the high convective term due to the
reverse biasing accounts for the above behaviour. We also
remark that the thin layers in the minority carrier distributions
in the forward bias case V, = 0.8 V shown in Fig. 7 are
only due to the choice of the logarithmic scale. This is clearly
confirmed by looking at Fig. 8 (left), where the electron and
hole concentrations are plotted in a linear scale. Indeed, the
solution exhibits a linear variation in most of the device as a
result of the very low vaiue of the local Peclet number, IT =
h(2e) (e = |Vi|™) = 6(1072).

We conclude the study of the p-n diode characteristic by
presenting some numerical results relative to the simulation of
the device at the onset of avalanche breakdown (see, e.g., [19]).
In this condition the convergence of Gummel's map quickly
worsens, until it definitevely stops as V, approaches the break-
down voltage Vgp. This is the result of the strong positive
feedback between the source term and the left-band side in
the current continuity equations, whose corresponding physical
counterpart is the large and progressive, with respect to &,
increase of current densities and carrier concentrations, which,
if not properly prevented, eventually leads to the melting of
the device itself due to Joule effect.

We show, respectively, in Figs. 9 and 10 the plots of carrier
densities, electric field, the impact ionization generation term
Ry, and the Shockley—Hall-Read recombination/generation

mechanism Rgyy relative to the reverse-bias voltage V, = —24
V and, for a comparison, the two latter quantities relative to
the case previously discussed, V, = —10V,

We must immediately outline that Gumme!’s iterative proce-
dure does not converge within the maximum allowed number
of iterations on &, which has been set equal to 100. Moreover,
the maximum absolute and relative errors reported on the un-
knowns (¢, n, p) at the end of the simulation are respectively
5.345 X 107 and 14.63%, where the latter quantity has been
shown to be approximately constant over the last iterations.
These results outline the good stability of the electric potential
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and a trend of the carrier concentrations towards an indefinite
increase, as k tends to infinity.

In order to better estimate this latter behaviour, it may be
useful to compare the high values of the electron and hole
densities across the junction with the corresponding ones at
V, = —10 V (in both the cases R # 0 and R = 0) and, at the
same time, plots of the recombination/generation mechanisms
Ry and Rgn (Auger generation R, has not been reported, since
it is eight orders less than Ryyp). It clearly turns out that the
increase of the carriers is to be ascribed only to the correspond-
ingly large increase of the impact ionization generation term
Ry as V, is switched from —10 to —24 V. As a consequence,
the electric field strength at the junction comes closer to its
threshold value Fy = —600 KVem™!, that is, the largest one
for which model {12) holds true. This in turn produces the
above large increase in Ry and explains the nonconvergence of
Gummel’s map at V, = —24 V.

Starting from these numerical evidences, we will analyze
Gummel’s map in detail in the next subsection for all the
reverse-biasing conditions, up to the breakdown voltage, and,
eventually, we will propose a suitable variant that is shown to
be successful.

6.1. Convergence of Gummel’s Map at Breakdown

According to what has been shown by the numerical tests,
we will make the following assumptions:

* the electric potential i is stabilized after few outer itera-
tions (k > 3)

¢ the Rgyy term is saturated; ie., it is independent of the
applied voltage; and the R,y term is negligible compared
to Ry.

The whole differential problem may thus be written as

7‘];1' +C¥,,J,t+a.] = (X)
P S 39)
I+ at, + ad, = f(x),

where we got rid of the Poisson equation, we included the Rgyy
and R,y terms in the function f(x), and we used the fact that
the curreat densities have a negative sign under reverse-bias
conditions,

After the discretization procedure, we come to the linear
system

(40)

where M is the 2 X 2 block matrix

M Hn M np
MP" MPP

M:

and w, f € R* are respectively the vectors

w=mp', f=(,f1)

in which n, p € R" are respectively the nodal values of electron
and hole concentrations and £, f, € R¥ are the inner products
of the function f(x) with the finite element test functions U,
v,;. The N X N blocks that make up the matrix M respec-
tively approximate

Mmi_> _J;z + aan
M’P_> ap‘]p

Mpn - an-]n

My — J, + apd,.

We also define the block diagonal matrices,

Dy O
D() =
0 Dy
M., 0
p= ,
0 M

where Dy, and Dy, are N X N blocks respectively obtained by
the finite element discretization of —J; and J; in (39).

We may recover the standard Gummel’s map by splitting in
system (40) the matrix M as M = Dy + K, thus leading to
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Dyw = —Kw + 41
and solving this system by Jacobi iterations
Dyw*! = —Kw* + f. (42)

The matrix D, therefore acts as a preconditioner of M.
The convergence condition for the approximants {w*} is

pUd — Dg'M)y <1,

where p(A) is the spectral radius of matrix A and [ is the identity
matrix. This requires

1= ADM <1 Vji=1,..N,

that is satisfied iff all the eigenvalues of the matrix Dy'M lie
in the unit circle ' with the center ¢ = (1, 0) in the complex
plane. The above result may be readily extended to the case
of more general splittings of the form

M=§5+(M-25),

where § is the preconditioner; the convergence condition be-
comes

ol — S'M) < 1.
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We consider, as a special case, § = P, that corresponds to
assigning the generation contributions due to each type of car-
rier to its associated drift-diffusion operator. The matrix P is
closer to the matrix M than the standard preconditioner Dy 1s,
yet it preserves the decoupling between the current continuity
equations. Use of such a preconditioner does not increase the
overall computational cost and it actually improves the conver-
gence rate of the classical iterative procedure. In the numerical
experiments performed, the number of global iterations has
been reduced up to a 10% factor.

In order to more precisely understand the slowing down of
the convergence rate of Gummel’s map as a function of the
increasing reverse bias, we report in Fig. 11 a spectral analysis
of both the iteration matrices Dy'M and P~'M in the cases
V.= —2land —23 V.

In the first case the eigenvalues of both matrices are strictly
inside the unit circle T" and turn cut to be clustered around the
center C; more specifically, we note that Re(A{(P'M)) are
syrmumetric with respect to C and that the imaginary parls are neg-
ligible.

An abrupt change of trend is exhibited by the two spectra
in the second case, where some of the eigenvalues fall outside
the convergence circle [, thus explaining the nonconvergence
of the two tterative procedures.

The spectral analysis reported above and, in particular, the
clustered dislocation of the eigenvalues suggests employing a
different iterative procedure on the system (40), based on the
use of the BI-CGSTAB method [20], which requires that the
preconditioming matrix has eigenvalues with strictly positive
real parts. This feature allows us to use the same preconditioner
Dy in such a way as to still preserve the decoupling between
the two drift-diffusion equations, but in any case thoroughly
changing the way of iterating. The actual implementation of
this procedure for the resolution of (41) turns out to be very

effective, with a spectacular improvement of the convergence
rate in all the biasing conditions, up to the onset of the device
breakdown. This is clearly shown in Fig. 12, where the number
of global iterations is reported as a function of the increasing
reverse applied voltage in both Jacobi and BI-CGSTAR algo-
rithms.

The acceleration BI-CGSTAB procedure is started when the
maximum nodal difference |5y is less than 107" V. This
condition assures that electric potential is stabilized and in all
the numerical experiments performed it is satisfied at k =
3. The total number of BI-CGSTAB iterations successively
required to achieve convergence varies between 3 and 6.

The dramatic improvement with respect to the standard itera-
tive procedure is clearly evident and this should make the use
of BI-CGSTAR method very attractive for the simulation of
multidimensional device geometries.
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